If it's not what You are looking for type in the equation solver your own equation and let us solve it.
14-5400/x^2=0
Domain of the equation: x^2!=0We multiply all the terms by the denominator
x^2!=0/
x^2!=√0
x!=0
x∈R
14*x^2-5400=0
We add all the numbers together, and all the variables
14x^2-5400=0
a = 14; b = 0; c = -5400;
Δ = b2-4ac
Δ = 02-4·14·(-5400)
Δ = 302400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{302400}=\sqrt{14400*21}=\sqrt{14400}*\sqrt{21}=120\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120\sqrt{21}}{2*14}=\frac{0-120\sqrt{21}}{28} =-\frac{120\sqrt{21}}{28} =-\frac{30\sqrt{21}}{7} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120\sqrt{21}}{2*14}=\frac{0+120\sqrt{21}}{28} =\frac{120\sqrt{21}}{28} =\frac{30\sqrt{21}}{7} $
| 2x2-4x3=54 | | 2=³√x | | x+14=5x-14 | | X14=5x-74 | | (2x+14)=(5x-74) | | X/9=15/x | | q/27=506=535 | | 2y+5y=-8 | | 5=w-924/14 | | -4y–5–4(-2y–3)+8=3 | | s/28-1=3 | | 59=3g+17 | | 7r-22=6 | | s/6-3=4 | | 2=u/6-6 | | b+177=658 | | 884=m+749 | | z-632=42 | | w+229=576 | | 2n+6n=10 | | t-95=159 | | t-26=116 | | h+69=917 | | x−15=18 | | 319=y+258 | | b+31=762 | | 56=c-855 | | x+32=35 | | g-226=770 | | w+112=281 | | r+306=997 | | s-37=312 |